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Abstract. A new model to calculate surface acoustic waves of superlattices is proposed. This
model may be derived by expanding the exact expression of the amplitudes of the elastic waves up
to second order with respect to the wave vector. It can be shown that the effective elastic constant
(EEC) model (Grimsditch M 198Bhys. RevB 31 6818) corresponds to the first order expansion
approximation. The present model surely reproduces with excellent accuracy the numerical results
obtained from the exact calculation for Cu/Al and Cu/Ag systems.

1. Introduction

In our previous paper [1] which we hereafter refer to as reference 1, we have derived the exact
dispersion equation [2] for the evaluation of surface acoustic waves of sagittal modes in a
metallic superlattice of thicknedsV - D in contact with a substrate of thickness D is the

period of the superlattice ardV is the total periodic number. Here the superlattice has been
assumed to be prepared by means of sputtering or evaporation [3] and have a strong tendency to
form a ‘pencil-type texture’, i.e., one in which the grains have a common orientation normal to
the film but are randomly oriented within the (111) film plane [4]. Our dispersion equation [2] is
the ultimate expression to evaluate the surface acoustic waves in various types of superlattices:
a bulk, semi-infinite and finite one with or without a substrate.

Many theoretical studies of the acoustic waves of superlattices have been done for more
than 15 years and this subject is considered to be well established [5-10]. Superlattices
are assumed to be infinite or semi-infinite periodically layered media in these theoretical
treatments. For an infinite superlattice, we can apply the Bloch theorem along the axis
perpendicular to the layers. Applying the Bloch theorem and the transfer matrix technique
one can derive the dispersion equation for the acoustic waves. In a semi-infinite superlattice,
one can construct surface waves, each of which is a linear combination of the acoustic waves
obtained as solutions of the above dispersion equation and attenuates far from the surface [6, 8].
When the period is sufficiently small compared to the acoustic wavelengths, the superlattice
behaves as a homogeneous medium with symmetry lower than that of the constitutive layers
and can be characterized by effective elastic constants (EECs). The EECs for a periodically
laminated structure with orthorhombic symmetry have been derived by Grimsditch [11, 12].
Obviously the acoustic waves are hon-dispersive within this limit. Thus, the modern theoretical
work dealing with periodically layered media has avoided the use of this effective medium
approximation [8]. We have demonstrated in our previous paper how the Rayleigh surface
wave velocity of a superlattice, which is finite in thickness and contacts with a glass substrate,
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approaches the one obtained from the effective elastic constant (EEC) model with a increasing
periodic number by solving the exact dispersion equation [2]; the surface wave velocity in the
EEC model corresponds to that of a superlattice with the infinitesimal period.

Both the EEC model and our dispersion equation give the same results in the limit of
zero period, though these approaches appear to be quite different. This fact suggests that both
approaches should have a possible corresponding relationship at the limit of zero period. From
this corresponding relationship we could derive the EECs and furthermore expect to find out
a model to reproduce the surface wave velocity which is dependent on the superlattice period;
this model is a modified EEC model with the dispersion relation. A derivation of the EECs for
an infinite superlattice has been reported without presenting the actual derivation expressions
[7]. In the present work, we will deal with two types of superlattice on a substrate; type |
consists ofL N alternating m and m layers of materials 1 and 2 as shown in figure 1(a), and
type Il consists of type | with an additionalnfayer as shown in figure 2(a).

(a)
m, jm, | m; |m,
d|d| a |a|
I I 1 1
LN*D
(b)
my m, m,* $
a2 LND a2 d,
I~ I~ 1
()
m, s
LN+D d,

Figure 1. (a) Type | superlattice consisting éfN alternating m and m layers of thicknesg;

of constituent 1 and thicknegs of constituent 2 on a substrate s of thickngss A unit spatial
period isD = d1 +d>. (b) A model structure of the type | superlattice based on the extended EEC
model. This structure consists of four layers labelled ky m,, m} and s. The first layer is the
constituent 1 ofl1/2 thickness, the second layer is the effective medium e of thickb&ssD,

the third layer is the virtual constituent 1 &f/2 thickness and the fourth layer is the substrate s of
thicknessi;. (c) The EEC model for the type | superlattice. The superlattice structure is replaced
by a layer of the effective medium e.

2. Elastic waves in a superlattice

We consider a superlattice occupying a space 9> —z, with its top surface at = 0 and
a substrate occupying a spaee; > z > —z. — d,;. The superlattice consists of alternating
m; and m layers of thicknesg; of constituent 1 and thicknegs of constituent 2. A unit
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Figure 2. (a) Type Il superlattice consisting of type | with an additionallayer of thicknesg; of
constituent 1. (b) A model structure of the type Il superlattice based on the extended EEC model.
This structure consists of four layers{nm,, m; and s layers) of thickness /2 of constituent 1,
thicknessLN - D of effective medium e, thicknes# /2 of constituent 1 and thicknegs of
substrate s.

spatial period iD = d; +d». We will consider that, is LN - D as shown in figure 1(a) or
LN - D +d; as shown in figure 2(a). Each layer is a (111) film plane consisting of numerous
grains randomly oriented within the film plane, which ensures elastic isotropy in the plane.
We can discuss the layer elastic waves and treat the superlattice elastic waves by connecting
the layer elastic waves using the proper boundary conditions.

Since the constituents and the substrate are elastically isotropic i thg glane, it
is enough to restrict the elastic waves propagating in the)(plane with the wave vector
q = (4x, 0, ¢;). In addition, we can assume commgnand frequency for the constituents
and the substrate because the boundary conditions depend only paxtee[1, 13]. For a
common set of,, w), there exist three types of solution fprin each layer and the substrate.
They are a pure transverse wave and two sagittal waves (a quasi-transverse wave and a quasi-
longitudinal wave) [7, 8].

For the wave with wave vectey”) = ¢, (1, 0, Q;) and frequency, we will express its
displacement at the point(y, z) and timer as

u® = UD explige(x + 0iz) — it} = UY explig, 0;z) (@=x,y,2) 1)

wherei denotes one of the constituents or the substiate 1, 2 or s). Using this expression,
we can write the wave equations as

g CI+CRO?  (Cry +CaO; 0 gy
po? [ OO | =q? | (CE+Choi Cig+co? 0 vl @
Uy 0 0 Coo +C1a Q7)) \UY

Here C\)), which is expressed aE,((',) in reference 1, ang; denote the elastic constant
tensor component and the density of the mediurihe first and second equations in matrix
equation (2) can be rewritten as

@) H2 (i) (i) &2 (@) (i)
_Cua OF +Cyy — Gy’ (Ci3 +Chy) Qi

Ui(= 0(i)/0;i)) = i i - T i e2"
’ (C13 +CaD 0 CH 02 +Cyy — Clj8?

®3)

with
£2 = pi?/(Cq?). @



4996 H Yasuda and A Yoshihara

From equation (4), we have
O +{Ai — (1 +B)ERQ? + (1 E)(C; — BiEH) =0 (5)

where A;, B; and C; are given by equation (11) in reference 1. Equation (5), a quadratic
equation ofQ?, gives two solutiong)? and Q% (1Q?| < |Q%)) for a given set of, and
o, whereQ? and Q2 are related to a quasi-transverse wave and a quasi-longitudinal wave,
respectively. The sagittal waves are forward- and backward- travelling quasi-transverse and
quasi-longitudinal waves, which are characterizedfy,(Q;1), (—Ui1, — Qi1), (Ui2, Qi2) and
(—U;2, —Qi2), respectively. The elastic waves in the medilare a superposition of these
waves.

We can express the location of the mediufh = 1, 2 or s) as-z;1 > z > —z;; — d; with
2y =(0U—-1)D,zy = zy+di1,zg =z andl = 1,2, ..., LN (or LN+1forthe lastconstituent 1
in figure 2(a)). We will write the ampIitudelé)ﬁ” of the elastic wave displacements at the top
of the mediumi of the/th period atz = —z;; asa;}, b}, ¢;; andd;; (and those at the bottom
atz = —z; — d; asa;;, b;;, c;; andd;;) for the above four waves{ki, Qi1), (—Ui1, —Qi1),
(Ui2, Qi) and (Uj2, — Qi2), respectively. The displacementvectafX, 0, u") for the elastic
waves in the mediumcan be written as

ul 101 1 1 .
x, = . + 7z .
<ug>> (U[ ~Usx U —U,-2>P’(Z zin)lui)

1 1 1 1 _
N (U,' =Un U»p - i2) Filetzin s o) ©)
where are used the definitions
fi1(2) 0 0 0
o 0 fa(-=») O 0
PI(Z) - 0 0 f‘iz(z) 0 (7)
0 0 0 fia(—2)
with f;;(z) = explig, Q;;z) and
at
+ bi
|“,‘_1> = cl:é . 8)
il
diy
For the substrate we use the variablés z,, a*, b¥, ¢ andd®.

The displacements and the stress components must be continuous at the boundary
z = —z; — d;. By application of these boundary conditions the amplitudes of the elastic
waves on the top surface of the superlattice at 0 (ju7,)) can be related to those on the
bottom surface of the substratezat —z; — d; (Ju;)) through

uy) = T, TP T (TP Y (TP Ty (TP T D)V Tafuy ,). (9)
Heren = 0 stands for the case shown in figure 1(a) ard 1 for the case shown in figure 2(a),
and the matrixt; (i = 1, 2 or s) is defined as

1 1 1 1
Ui —-Uay Uz —Uz

T = (10)
i1 o1 ;2 o2
Bii —Bi Bz —Bi2
with
aij = C13 + CU;; Qi andBy; = Cig (Ui + Qi) (11)

and the matrixP; (i = 1, 2 or s) is defined in equation (7) for= —d;.
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The last equation in matrix equation (2) can be rewritten using equation (4) as
07 =&~ c/ch) (12)
We will represent this solution a@%. For this solution we have a forward waveds) and
a backward wave-{Q;3). We can derive a relation for the amplitudes of the present waves,
which we denote bWh) and|v;"), at the top surface of the superlattice and the bottom surface
of the substrate as
v;) = 1, @ pty D (tpaty D' [2paty D pat™H] N v 4) (13)

where the meaning of is the same as in equation (9). Here the matricesdp; (i = 1, 2
or s) are given by

1 1
“—<czgm —CﬁQa> a4
and
_(fa(=d) 0
n=("5" ) (15)

with fi3(d) = explig, Q;3d).

3. Expansion of phase transfer matrices and the effective elastic constants

In reference 1, we have demonstrated that the Rayleigh wave velocity obtained from our
dispersion equation [2], which is essentially derived from equation (9), approaches the velocity
given by the EEC model and that both velocities coincide with each other in the limit of the
zero period. This fact suggests that the transfer matrices in equations (9) and (13) may be
replaced by the corresponding transfer matrices of the EEC model in the zero period limit. In
order to elucidate the relationship between our dispersion equation and the EEC model as well
as gaining insight into modifying the EEC model, we will expand these transfer matrices with
respect to the periof).

The amplitudes of the sagittal elastic waves and the pure transverse waves on the top of
thelth layer at; = —z;; and those on the top of thé+ 1)th layer at; = —z;;+1 are related by
the transfer matrice®, P, T, *T1 Py T, andtypot, *typat; b as

Tilu3 ) = ToPo Ty T PATy Y - Taluy ) (16)
and
110y 141) = tapaty tipaty t - tafvg). 17)

These transfer matricds P, T, 1Ty Py T, * andr, pot, 11 pat; * look different from the standard
ones [6-8]. The transformation from the present forms to the standard forms is given in
appendix A.
Now we expand the phase matixor p; in terms of phase variablg Q;;d;. For example
the matrixT; P; Tfl (i = 1 or 2) can be written as
TPT = 1—iqudi (T, 0iT; ) + 3(—iqud) (T Qi T, H? + - - (18)
with
On O 0 0
|l o -0a 0 o0
Ql - 0 0 Qi2 0 (19)
0 0 -0

0 i2
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We obtain the same result fo,-rpitlfl (i = 1 or 2) simply replacingl; and Q; by 1, and
- <Qi3 0 > .
gi = , respectively.

0 -0
After complicated but straightforward calculations, we obtain
0 -1 0 ycy)
rorio | Cu/Ca 0 1Cm o0
re 0 CilE? 0 -1
z 0 -Ch/Cy O
0p2_ 0, i3
('71' = Cpbf —Ciy + T) (20)
C33
the derivation of which is given in appendix B, and
.o 0 1/C(i)>
1 44
Ligit; ~ = i . 21
= (g, o >

Since the matrices with capital symbols and small letter symbols give the same results
by replacing the symbols, we will in principle present only the results for the capital symbol
matrices. Utilizing the expansion form (18), we can expand the transfer matrix in equation (16)
as

ToPTy ‘T PiTy = 1= iqu DI fu(Th 01Ty Y + fo(T2 02T, )]
+3(—ig DY fH(TL01 Ty )2 + 21 fo(T2 02T, H(T1 011 )
+f2(T202T, H?] + - - (22)
with f; =d;/D (i = 1 or 2).

We will replace thdth layer, which consists of two constituents 1 and 2 of thickrkss
andd,, by a medium of thicknes® with EECs. Then the above discussions and relations can
be applied for the effective medium by suitable replacements of variables. We will omit the
suffix i (i = e) for the effective medium. Then the corresponding relations to equations (16)
and (17) are given as

Tlui ;) =TPT - Tluy,) (23)

and

1Vl 14q) = tpt e tvy). (24)

It is easy to write down the matricdsand: for the effective medium from the matrices (10)
and (14). The matrice® and p are defined in equations (7) with= —D and (15) with
d =D fori =e.

The transfer matriy’ P71 is expanded with respect to the phase fagia®; D as

TPT*=1—iq.D(TOT ™Y +1(—ig. D)A(TOT 12+ .. (25)

where the matrix product 97! can be readily obtained from the matrix (20).

We expect that the transfer matrices in equations (16) and (17) are equivalent to the ones
in equations (23) and (24) in the vicinity of zero peridd (~ 0). Then the expansions of
these transfer matrices with respectjtd, which are represented in equations (22) and (25),
must be equal at least in the first order terms:

TOT ™ = fi(TL 0Ty ) + fo(T2 Q215 ). (26)
From equations (20) and (26) one can readily derive the following relations.
Hhtfa=1 (27)
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1 _ Ak 8)
Cu” il i
1 f1 f2
Cacd el #)
33 33
Ci3 Ci3 Ci3
.-t + f 2= (30)
33 Cas Cay
Cas® = LCRE + [CZE (31)
and
C2 C(1)2 C(Z)2
Cqq — ~13 _ f |:C(1) _ 13 :| + f |:C(2) _ 13 i| (32)
11 C33 1 11 C:%) 2 11 Cé?

Equations (4) and (31) yield@ = fip1 + f2p2, Which indicates that the density of the
effective medium is the mean density of two constituents. Equations (21)@nd

= fitigaty V) + fotagaty b) give

Caa03 = 1043 0%s + /€L 0% (33)
From equations (12), (31) and (33), we obtain
Cos = [1C5g + 2080 (34)

Equations (28), (29), (30), (32) and (34) are the same expressions for the superlattice EECs as
derived by Grimsditch [11].

The expansions (22) and (25) are not equivalent in the second order terms. The second
order term in expansion (25) is given by

[A(TL01 T + fo(T202T, D = AT 01T + fE(T20.T, 12
+ 1 f2l(TL 01T (T2 02T, + (T2 02T, H)(T1 01T, )] (35)

using the relation (26). This expression is symmetric interms of two transfer mdf{i@efl‘l

and7; Q2T2‘1, while the second order term in expansion (22) lacks this symmetry. This fact
results from the symmetry difference between a layer consisting of two constituents and an
effective medium layer with respect to the inversion or mirror symmetry. Here we notice that
we obtain the EEC model if we neglect this symmetry difference and assume the expansions
of T2P2T2*1T1P1T[1 andspat, 1t1p1t{ 1 are completely expressed in terms of the first order
terms of their expansion, which we will call the first order expansion approximation. This is
an essential defect of the EEC model. Next we will introduce the modified EEC model which
is derived from devising that both the transfer matrices may be adjusted to coincide with each
other up to the order afy, D)? in their expansions.

4. A new model to calculate surface elastic waves

As already discussed in section 2, the amplitudes of the quasi-transverse and longitudinal waves
in a substrated superlattice on the top surface are related to the ones on the bottom surface of
the substrate through equation (9). For the pure transverse waves we derived equation (13)
and these waves form the surface waves known as the Love waves. We will discuss first the
surface elastic waves known as the Rayleigh waves and the Sezawa waves, which are related
to equation (9).
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The transfer matrix’y P; Tfl (i = 1 or 2) in equation (9) can be rewritten E,SP,-T*l
= T, P"°T T, PM*T %, because of a trivial relatiofP/*)2 = P,. Using this expression we
can rewrite the quantity > P,T, (T P T, H]FN as

[(TszT;l)(TlPlT‘l)]LN (T PP Y (PP T Py P T,
x(To Py T, 2T PPT DN (TP 2T ). (36)

Here we can easily derive a following expansion relation by referring the expansion (22) to
equation (26):

(TL PP T AT Py T Y (T Py P Ty YTy PP T Y
=1—ig:D(TQT ™) + 3(—ig: D)*(T QT 1) +---. @37)

1/2

1/2 1/2 1/2

Equation (37) suggests thatthe mattlx P, * T, * Ty P,/ * T; 1) (To Py * Ty 11y P/ T 1), which

is also a transfer matrix, can be replaced by the transfer matfig —* for the effective
medium in a pretty good approximation. Note that both of the transfer matrices have inversion
symmetry. This is the reason why the expansions of these transfer matrices with respect to the
phase factor are identical up to the second order. Thus we have

(TP T (T AT = (P21 T P(-LN - DYT (TP 2T (38)
in the second order approximation. Substitution of the approximation (38) in equation (9)
gives

Toluy) = (T, T, ) (Ty P/

1/2

TyHITP(—LN - D)T (T3 Py “ T HTaluy 4) (39)

inwhichk = 2n — 1 (= —1 or 1) and(P;/*)~1 = P~Y/2, In equation (39) the case bf= —1
corresponds to the four layered structure labelled bym, m; and s in figure 1(b), instead
of the original structure shown in figure 1(a); the first layer is the constituent 1 with thickness
d1/2, the second layer an effective medium e with thickrieSs D, the third layer the virtual
constituent 1 with thicknesg /2 and the last layer is a substrate with thicknéssespectively.
Note that the traveling direction of the elastic waves is reversed in the third layer. The case of
k = lisillustrated in figure 2(b).

The elastic waves should satisfy the stress free conditifhs= 0 ande) =0 (i = 1or
s) at the top surface,= 0, and the bottom surface= —z;, —z;, ofa substrated superlattice.
These conditions are summarized as

Axlui,) = 0andA,lu;) =0 (40)
using the matrix4; (i = 1 or s) defined by
P oA 00 A 10
A, =(0 T; with 0 = (O O) andl = (O l)' (42)

The stress-free boundary conditions (40) together with the amplitude equation (9) yield an
exact dispersion equation [2] to calculate the surface elastic waves for a substrated superlattice
illustrated in figure 1(a) or 2(a) [1]. By using the approximate equation (39) instead of the
exact equation (9) we obtain

0 1 .
((() i)(TSPSTS‘l)(TlPlk/ZTl1)[TP(—LN~D)T‘l](TlPll/le1)>Tl|u1'1> =0 (42

Equation (42) has non-trivial solutions, when the determinant of thkeZmatrix included in
the above equation becomes zero:

det{(O (TP T (TP T YT P(—LN - D)T 1](T1P1/2T—1)(é>}=0. (43)
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Here the case df = —1 corresponds to the superlattice shown in figure 1(b)kaadl to the
one shown in figure 2(b), respectively.
We obtain a similar dispersion equation for the pure transverse waves:

(0 1><rspxts1>(r1p’;/2r;1)[tp<—LN-D>r1](r1pi/2rfl)(é)=o (44)

with the case ok = —1 for the model illustrated by figure 1(b) akd= 1 for the model of
figure 2(b). Here(pi/z)2 = p1, p(=LN - D) = p"" and the stress free condition§) = 0
(i = 1 or s) on the top and bottom surfaces are given by

(0 Dnlvyy) =0and(0 1)ilv;) =0. (45)

5. Results and discussions

We have considered two types of substrated superlattice; type | consisité aternating m
and m layers as shown in figure 1(a) and type Il consists of the type | superlattice with an
additional m layer as shown in figure 2(a). Our substrated superlattice must not be confused
with the capped semi-infinite superlattice [10]. Our superlattice has a finite thickness and its
bottom surface contacts with a substrate of an arbitrary thick#éiesshile the capped one
is semi-infinite in thickness and its top surface is covered with a thin layer. The distinction
between the finite thickness and the semi-infinite thickness is significant. While our approach
starts with the elastic waves in a finite superlattice, the conventional theories [6—10] consider
elastic waves in an infinite superlattice.

The dispersion equations to evaluate the surface acoustic waves for the sagittal and in-
plane transverse modes in a superlattice of thickfi@és D or LN - D +d; in contact with a
substrate of thickness, as shown in figure 1(a) or figure 2(a), are given by

~

det{(é D@ P T Y PTT Y (T2 PoAT; (T P T D] (é)} =0 (46)
and
(0 D)ty Henpary D' [(2paty (eapaty DY (é) =0. (47)

Here the dispersion equations with the case ef 0 andn = 1 correspond to those for the
superlattice shown in figure 1(a) and 2(a), respectively.

In reference 1, the dispersion equation (46) witk= O [2] has been expressed in terms
of the 4x 4 matrix as equation (26) in reference 1. Using equation (41) one can easily reduce
the previous expression [2] to the form of the 2 matrix given by equation (46) with = 0.

The thickness of the substrate is considered infinite in the standard Brillouin scattering
experiment [1]. For the case df — oo, the terms(0  1)7, P, in equations (43) and (46)
and(0 1)t p, in equations (44) and (47) can be replaced by the terrr(séof 8 (1) 8)
and(1 0), respectively. The validity of these replacements is proved in appendix C.

We have shown in section 3 that the EEC model is equivalent to the first order
expansion approximation of the exact dispersion equations (46) and (47) regarding the
phase factog, D. Under this approximation, th@y P17, )" [(T2 P2 T, H)(T1 PL Ty H]N and
(tpat; Y [(t2pat; H (i paty H]HY matrices in equations (46) and (47) are replaced by the
TP(—LN-D —nd))Ttandtp(—LN - D — ndy)t~* matrices, which are independent of the
period D. It is obvious that the EEC model does not provide the dispersion relation as the
exact expressions (46) and (47) do.
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In section 4, we have derived a new model or approximation which is an extended EEC
model and recovers the dispersion relation of interest. That is represented by equations (43)
and (44). It is essential to symmetrize the transfer matrices under the inversion operation
in this model. This model replaces a real substrated superlattice illustrated by figure 1(a) or
figure 2(a) by a virtual four layered structure shown by figure 1(b) or figure 2(b).

We have carried out the exact calculations of the Rayleigh wave velocities in Cu/Al and
Cu/Ag superlattices illustrated in figure 1(a) applying our dispersion equation [2] (equation (46)
with n = 0) for the case ofl; — oo or d; > 3.5, (the wavelength of the surface wave
As = 3000 A in the standard Brillouin scattering experiment) [1]. In our extended EEC model,
the corresponding surface wave velocities of the substrated superlattices can be evaluated from
equation (43) withk = —1.

The corresponding numerical results in our extended EEC model are listed in tables 1 and
2 and compared with exact ones. Hér® = A,/ D (D: the period of the superlattice), and
the Rayleigh wave velocity is normalized by the transverse wave velocity of pure Cu metal.
We can conclude that our extended EEC model can reproduce the exact dispersion relation of
the Rayleigh surface waves of a superlattice with good accuracy.

Table 1. Numerical comparisons between the extended EEC model and the exact calculation of
the relative Rayleigh wave velocities in Cu/Al superlattices on glass substrate of infinite thickness
(LN/LD = 1.5) intwo cases; case d¢, /da; = 1/2 and case bd¢, /da; = 2/1. The parameter

LD means the number of periods included in the wavelength of the Rayleigh wawer /q.):

LD = A;/D With D = dc, +dy.

Case a Case b

LD Exact Model RE Exact Model RE

2 1.02616 1.05132-0.02452 0.98184 0.98720-0.005 46

6 1.09002 1.09023-0.00019 1.00028 1.0005G-0.00022
12 1.09888 1.09826 0.00056 1.00558 1.00528 0.00030
18 1.10088 1.10048 0.00036 1.00688 1.00665 0.00023
30 110223 1.10204 0.00017 1.00771 1.00759 0.00012
54 110303 1.10296 0.00006 1.00816 1.00812 0.00004
90 1.10341 1.10338 0.00003 1.00836 1.00835 0.00001
270 1.10378 1.10378 0.00000 1.00855 1.00855 0.00000

00 1.10396 1.00863

oo: EEC model.
RE: the relative error of the extended EEC model calculation against the exact calculation.

Appendix A

Here we will elucidate the relationships between transfer matrices used in equations (16) and
(17) and those used generally in conventional theoretical treatments [6-8].

We have definedlyP,T, *TiPiT, ™t and rpoty 't pat;t as the transfer matrices in
equations (16) and (17). These expressions are our device to treat the transfer matrices
theoretically without employing the Bloch theorem. Equations (16) and (17) can be rewritten
as

Uy js1) = Ty "o PoT, M TiPyuy ) (A1)
and

1 1
|UI,1+1> =1, "pat, llP1|U1/>- (AZ)
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Table 2. Numerical comparisons between the extended EEC model and the exact calculation of
the relative Rayleigh wave velocities in Cu/Ag superlattices on glass substrate of infinite thickness
(LN/LD = 1.5)intwo cases; Case d¢, /da, = 1/2 and Case bdc, /ds, = 2/1. The meaning

of the parametek D is the same as in table 1.

Case a Caseb

LD Exact Model RE Exact Model RE

2 0.79533 0.79188 0.00434 0.88837 0.88487 0.00394
0.78862 0.78733 0.00164 0.87597 0.87377 0.00251
6 078676 0.78566 0.00140 0.87309 0.87194 0.00132
12 0.78421 0.78364 0.00073 0.87059 0.87010 0.00056
18 0.78315 0.78283 0.00041 0.86968 0.86940 0.00032
30 0.78224 0.78211 0.00017 0.86889 0.86877 0.00014
54 0.78163 0.78158 0.00006 0.86833 0.86829 0.00005
90 0.78132 0.78130 0.00003 0.86804 0.86803 0.00001
136 0.78116 0.78115 0.00001 0.86790 0.86789 0.00001
270 0.78101 0.78101 0.00000 0.86775 0.86775 0.00000

00 0.780 86 0.86761

I

oo: EEC model.
RE: the relative error of the extended EEC model calculation against the exact calculation.

These expressions will be considered usual rather than ours. On the basis of equations (Al)
and (A2), the transfer matrices should be defined: a7, P,T, *T1 P1 andt; *t2pat, ‘1 p1.

The transformation from the transfer matrices in equations (16) and (17) into the usual ones
in equations (A1) and (A2) is obviously a similarity transformation:

T P, TPy = TP, T P T T, (A3)
l‘l_ltzpzl‘z_ltlpl = l‘l_l[tngtz_ltlpltl_l]tl. (A4)

In the conventional theoretical treatment [6], one chooses the standard amplitudes of the
elastic waves at the middle of each constituent layerz.e..—z; — d; /2. Now we will write
these amplitudes as

luis) = (AS)

dj
for the sagittal modes and; ;) for the transverse mode. These amplitudes are related to our
amplitudes as follows:

1/2 -1/2, —
i) = Pty = PV ) (A6)

and
1/2 -1/2, —
ia) = pi i) = i P lv). (A7)
Here we havé P2 = P, and(PY%) 1 = P2, (p/?)2 = p; and(p;/?)~1 = p; /2.

In the conventional theoretical treatment [6], the exponential terms; iand p; in
equations (Al), (A2), (A6) and (A7) are expressed in terms of hyperbolic cosines and sines;
we interpret ourQ;; as iQ;; and the axig as—z in the conventional theory. Accordingly we

replaceP; andp; by U~1P,U andop;o/2, where is used the notation

U=<% 2) (A8)
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with 0 = 8 8 L Ut=U/2,0 = i _11) ando ! =o0/2.
Equations (A1) and (A2) can be rewritten as
U Yug 1) = U TPPUNU T TU) (UL PUY U T T U)(U P20 U Yy
(A9)
and
o L) = (07 py%0) (07 M 0) (07 pao) (0 My tho) (0 py P )o vy (A10)
We write equations (A9) and (A10) as
[W11) = Tlyn) (A11)
and
|pre1) = |dhr) (A12)
with [y;) = U~ uy,) and|¢;) = o ~|v1,). Here we have an expression
ay; +byy
) = % e 511,}1 (A13)
c1r —dyy

which appears in the conventional theory [6]. The matriEemd7 have been defined as the
transfer matrices in the conventional theory [6-8]. Obviously from the above discussion, the
transfer matrice§ andr in the conventional theory are related to those in equations (16) and
(17) by

T = U P T NPT T P T Y T PP (A14)
and

S 1 12 - - ~1/2
t=o 1171/ 17 H(t2paty " paty Htipy %o (A15)

Appendix B

The inverse matri>Tlf1 of the matrixT; defined by equation (10) is given by
—i2/q;  Bi2/UB; Y@ —Ui/UB,
—aip/0; —Pi2/UB;  1/a;  Uio/UB,
Tl 1] —« 2/? ,32/_/3 /Ol_ 2/_,3 (B1)
2| —ain/a; —pin/UB; —1/a; Uin/UB;
—ai/o;  Bin/UB;  —1/a; —Ui/UB;

where
T =1 — a2 = CHUin Qi1 — Ui Qi) (B2)
and
UPB; = Unpiza — UnPin = Ci (UnQiz — U2 Qin). (B3)
By use of matrices (10), (19) and (B1) with the expression (11), one can easily obtain
0 -1 0 ycy
~ - —cicy o ycy o
T;'Qi T'_l = B(l) — 13/ 33 i) / 33 =) (54)
! 0 B3y 0 By,

By 0 B3 o
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with

Ui10i1)(Ui20i2)(Q%4 — 0%) + 0405 (Uin Qi1 — Ui20:2)
(UllQlZ 12Q11)Q11Q12

~o  Cls €4 (Uin0i)(Ui20i2) (0% — 0%)

B(l):_ls ﬁ ! i i i i2 il B6

M) +CL(12 (Ui1Qi2 — Ui2Qi1) Qi1 Qi2 (80)

(BS)

20 ) <z>(
By = —Ci3+Cy

3O — c® Cg 0,-04 1) + £292UinQiz — Ui2Qin) (B7)
aTe Cé’g UinQi1 — Ui2Qi2 UirQi1 — Ui2Qi2
and
_n  cY 2 _ 02
BY = % (1 9270 ) . (B8)
Cas UinQi1 — UnQiz

Now we can find the following relations betwe#&fy and Q;;, which are the solutions of
equation (3):

@)
C44
c+c)
@) () g2
Cll C44%-

Ui20i2 — UnQi1 = — (0% — 07) (B9)

(Ui2Qi1 = UnQi2) 01 Qi2 = — 7 0 (05— 0% (B10)
Ci3+C,
and
C(l) C(l) 2
Uin Qi) WUi2Q0i2) = ff“s (B11)
C33
Furthermore, from equation (5) we have
cl) — c0g2
0405 = 7@—5?). (B12)
Ca3

Substituting relations (B9)—(B12) into equations (B5)—(B8), we have

59 = cVg = (i) = (i) M) 0 ciy (@) C13

l l 1 1 1 l l

By; = Cy4 By =—1 By = Cy6? — Cii + 0] andBy; = =] (B13)
33 33

Thus we can derive the expression (20).

Appendix C
Atthe top surface of the substrate the boundary conditions, which are included in equations (40)
and (45), can be expressed as

(0 DTPuf) =0and(0 1yt pslv;) =0. (C1)

The surface elastic waves damp as they propagate from the surface into the inside of the
superlattice. Thus for the casedyf - oo we have

f5j(ds)/f5j(=ds) = 0 j=12and3 (C2)
where f;(z) is defined in equations (7) and (15). Using (C2) one has

A 1 ~ O[slfsl 0 astsZ 0 _ aslfsl OlstsZ 1000
(0 “T"Pf‘(ﬂxlfﬂ 0 Bt 0>_</351fs1 ﬂs2fs2><0 0 1 0> ©3)
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and

(0 Lityp, =C 0safiz(1 0) (C4)

where f;; denotesf;; (—d;).
The relations (C3) and (C4) suggest that in this case the boundary conditions (C1) can be

rewritten as
(1 0 0O

00 1 o) lu*)y =0and(1 0)[v) =0, (C5)

These are reasonable boundary conditions for the substrate of infinite thickness. From the
above discussion we can readily conclude that the t€ins1)7, P, and (0 1)z, ps are

replaced by the terméé 8 g 8) and(1 O0) for the case ofl; — oco.

References

[1] Yasuda H and Yoshihara A 1998 Phys.: Condens. Matteli0 9623
[2] Equation (26) in [1]
[3] FujimoriH, Shinjo T, Yamamoto R, Maekawa S and Matsui M (eds) 1@@fallic Superlattice¢Tokyo: Agne)
(in Japanese)
[4] Baraland D, Hilliard J E, KettersoJ B and Miyano K 1982. Appl. Phys53 3552
[5] Camley R E, Djafari-Rouhani B, Dobrzynski L and Maradu#i A 1983Phys. RevB 277318
[6] Djafari-Rouhani B, Dobrzynski L, Hardouin Duparc O, Casnke E and Maradudi A A 1983Phys. Re\B 28
1711
[7] Nougaoui A and Djafari-Rouhani B 198urf. Sci185125
Nougaoui A and Djafari-Rouhani B 19&urf. Sci199623
[8] Sapriel J and Djafari-Rouhani B 19&urf. Sci. Repl0189
[9] Fermandez-Alvarez L and Velascd/ R 1996J. Phys.: Condens. Matté 6531
[10] El Boudouti E H, Djafari-Rouhani B, Akjouj A and Dobrzynski L 199#1ys. RevB 5414 728
[11] Grimsditch M 1985%Phys. RevB 316818
[12] Grimsdith M H 1985Light Scattering in Solid \¢d M Cardonas and Giitherodt (Berlin: Springer) p 285
[13] LandaiL D and Lifshiz E M 1979Fluid Mechanicdransl J B Sykes and W H Reid (Oxford: Pergamon) p 254



