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Abstract. A new model to calculate surface acoustic waves of superlattices is proposed. This
model may be derived by expanding the exact expression of the amplitudes of the elastic waves up
to second order with respect to the wave vector. It can be shown that the effective elastic constant
(EEC) model (Grimsditch M 1985Phys. Rev.B 316818) corresponds to the first order expansion
approximation. The present model surely reproduces with excellent accuracy the numerical results
obtained from the exact calculation for Cu/Al and Cu/Ag systems.

1. Introduction

In our previous paper [1] which we hereafter refer to as reference 1, we have derived the exact
dispersion equation [2] for the evaluation of surface acoustic waves of sagittal modes in a
metallic superlattice of thicknessLN ·D in contact with a substrate of thicknessds ; D is the
period of the superlattice andLN is the total periodic number. Here the superlattice has been
assumed to be prepared by means of sputtering or evaporation [3] and have a strong tendency to
form a ‘pencil-type texture’, i.e., one in which the grains have a common orientation normal to
the film but are randomly oriented within the (111) film plane [4]. Our dispersion equation [2] is
the ultimate expression to evaluate the surface acoustic waves in various types of superlattices:
a bulk, semi-infinite and finite one with or without a substrate.

Many theoretical studies of the acoustic waves of superlattices have been done for more
than 15 years and this subject is considered to be well established [5–10]. Superlattices
are assumed to be infinite or semi-infinite periodically layered media in these theoretical
treatments. For an infinite superlattice, we can apply the Bloch theorem along the axis
perpendicular to the layers. Applying the Bloch theorem and the transfer matrix technique
one can derive the dispersion equation for the acoustic waves. In a semi-infinite superlattice,
one can construct surface waves, each of which is a linear combination of the acoustic waves
obtained as solutions of the above dispersion equation and attenuates far from the surface [6, 8].
When the periodD is sufficiently small compared to the acoustic wavelengths, the superlattice
behaves as a homogeneous medium with symmetry lower than that of the constitutive layers
and can be characterized by effective elastic constants (EECs). The EECs for a periodically
laminated structure with orthorhombic symmetry have been derived by Grimsditch [11, 12].
Obviously the acoustic waves are non-dispersive within this limit. Thus, the modern theoretical
work dealing with periodically layered media has avoided the use of this effective medium
approximation [8]. We have demonstrated in our previous paper how the Rayleigh surface
wave velocity of a superlattice, which is finite in thickness and contacts with a glass substrate,
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approaches the one obtained from the effective elastic constant (EEC) model with a increasing
periodic number by solving the exact dispersion equation [2]; the surface wave velocity in the
EEC model corresponds to that of a superlattice with the infinitesimal period.

Both the EEC model and our dispersion equation give the same results in the limit of
zero period, though these approaches appear to be quite different. This fact suggests that both
approaches should have a possible corresponding relationship at the limit of zero period. From
this corresponding relationship we could derive the EECs and furthermore expect to find out
a model to reproduce the surface wave velocity which is dependent on the superlattice period;
this model is a modified EEC model with the dispersion relation. A derivation of the EECs for
an infinite superlattice has been reported without presenting the actual derivation expressions
[7]. In the present work, we will deal with two types of superlattice on a substrate; type I
consists ofLN alternating m1 and m2 layers of materials 1 and 2 as shown in figure 1(a), and
type II consists of type I with an additional m1 layer as shown in figure 2(a).

Figure 1. (a) Type I superlattice consisting ofLN alternating m1 and m2 layers of thicknessd1
of constituent 1 and thicknessd2 of constituent 2 on a substrate s of thicknessds . A unit spatial
period isD = d1 + d2. (b) A model structure of the type I superlattice based on the extended EEC
model. This structure consists of four layers labelled by m1, me, m∗1 and s. The first layer is the
constituent 1 ofd1/2 thickness, the second layer is the effective medium e of thicknessLN · D,
the third layer is the virtual constituent 1 ofd1/2 thickness and the fourth layer is the substrate s of
thicknessds . (c) The EEC model for the type I superlattice. The superlattice structure is replaced
by a layer of the effective medium e.

2. Elastic waves in a superlattice

We consider a superlattice occupying a space 0> z > −zL with its top surface atz = 0 and
a substrate occupying a space−zL > z > −zL − ds . The superlattice consists of alternating
m1 and m2 layers of thicknessd1 of constituent 1 and thicknessd2 of constituent 2. A unit
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Figure 2. (a) Type II superlattice consisting of type I with an additional m1 layer of thicknessd1 of
constituent 1. (b) A model structure of the type II superlattice based on the extended EEC model.
This structure consists of four layers (m1, me, m1 and s layers) of thicknessd1/2 of constituent 1,
thicknessLN · D of effective medium e, thicknessd1/2 of constituent 1 and thicknessds of
substrate s.

spatial period isD = d1 + d2. We will consider thatzL is LN ·D as shown in figure 1(a) or
LN ·D + d1 as shown in figure 2(a). Each layer is a (111) film plane consisting of numerous
grains randomly oriented within the film plane, which ensures elastic isotropy in the plane.
We can discuss the layer elastic waves and treat the superlattice elastic waves by connecting
the layer elastic waves using the proper boundary conditions.

Since the constituents and the substrate are elastically isotropic in the (x, y) plane, it
is enough to restrict the elastic waves propagating in the (x, z) plane with the wave vector
q = (qx, 0, qz). In addition, we can assume commonqx and frequencyω for the constituents
and the substrate because the boundary conditions depend only on thez axis [1, 13]. For a
common set of (qx ,ω), there exist three types of solution forqz in each layer and the substrate.
They are a pure transverse wave and two sagittal waves (a quasi-transverse wave and a quasi-
longitudinal wave) [7, 8].

For the wave with wave vectorq(i) = qx(1, 0,Qi) and frequencyω, we will express its
displacement at the point (x, y, z) and timet as

u(i)α = U(i)
α exp{iqx(x +Qiz)− iωt} = Ũ (i)

α exp(iqxQiz) (α = x, y, z) (1)

wherei denotes one of the constituents or the substrate (i = 1, 2 or s). Using this expression,
we can write the wave equations as

ρ1ω
2

 Ũ (i)
x

Ũ (i)
z

Ũ (i)
y

 = q2
x

 C
(i)
11 +C(i)44Q

2
i (C

(i)
13 +C(i)44)Qi 0

(C
(i)
13 +C(i)44)Qi C

(i)
44 +C(i)33Q

2
i 0

0 0 C
(i)

66 +C(i)44Q
2
i

 Ũ (i)
x

Ũ (i)
z

Ũ (i)
y

 . (2)

Here C(i)kl , which is expressed asC
(i)

kl in reference 1, andρi denote the elastic constant
tensor component and the density of the mediumi. The first and second equations in matrix
equation (2) can be rewritten as

Ui(= Ũ (i)
z /Ũ

(i)
x ) = −

C
(i)
44Q

2
i +C(i)11 − C(i)44ξ

2
i

(C
(i)
13 +C(i)44)Qi

= − (C
(i)
13 +C(i)44)Qi

C
(i)
33Q

2
i +C(i)44 − C(i)44ξ

2
i

. (3)

with

ξ2
i = ρiω2/(C

(i)
44q

2
x ). (4)
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From equation (4), we have

Q4
i + {Ai − (1 +Bi)ξ

2
i }Q2

i + (1− ξ2
i )(Ci − Biξ2

i ) = 0 (5)

whereAi , Bi andCi are given by equation (11) in reference 1. Equation (5), a quadratic
equation ofQ2

i , gives two solutionsQ2
i1 andQ2

i2 (|Q2
i1| 6 |Q2

i2|) for a given set ofqx and
ω, whereQ2

i1 andQ2
i2 are related to a quasi-transverse wave and a quasi-longitudinal wave,

respectively. The sagittal waves are forward- and backward- travelling quasi-transverse and
quasi-longitudinal waves, which are characterized by (Ui1,Qi1), (−Ui1,−Qi1), (Ui2,Qi2) and
(−Ui2,−Qi2), respectively. The elastic waves in the mediumi are a superposition of these
waves.

We can express the location of the mediumi (i = 1, 2 or s) as−zi1 > z > −zil − di with
z1l = (l−1)D, z2l = z1l+d1, zsl = zL andl = 1, 2, . . . , LN (orLN+1 for the last constituent 1
in figure 2(a)). We will write the amplitudes̃U(i)

x of the elastic wave displacements at the top
of the mediumi of the lth period atz = −zil asa+

il , b
+
il , c

+
il andd+

il (and those at the bottom
at z = −zil − di asa−il , b

−
il , c

−
il andd−il ) for the above four waves, (Ui1,Qi1), (−Ui1,−Qi1),

(Ui2,Qi2) and (−Ui2,−Qi2), respectively. The displacement vector (u(i)x , 0, u
(i)
z ) for the elastic

waves in the mediumi can be written as(
u(i)x
u(i)z

)
=
(

1 1 1 1
Ui1 −Ui1 Ui2 −Ui2

)
Pi(z + zil)|u+

i,l〉

=
(

1 1 1 1
Ui1 −Ui1 Ui2 −Ui2

)
Pi(z + zil + di)|u−i,l〉 (6)

where are used the definitions

Pi(z) =


fi1(z) 0 0 0

0 fi1(−z) 0 0
0 0 fi2(z) 0
0 0 0 fi2(−z)

 (7)

with fij (z) = exp(iqxQij z) and

|u±i,l〉 =


a±il
b±il
c±il
d±il

 . (8)

For the substrate we use the variablesu±s , zs , a±s , b±s , c±s andd±s .
The displacements and the stress components must be continuous at the boundary

z = −zil − di . By application of these boundary conditions the amplitudes of the elastic
waves on the top surface of the superlattice atz = 0 (|u+

1,l〉) can be related to those on the
bottom surface of the substrate atz = −zL − ds (|u−s 〉) through

|u−s 〉 = T −1
s (TsPsT

−1
s )(T1P1T

−1
1 )n[(T2P2T

−1
2 )(T1P1T

−1)]LNT1|u+
1,1〉. (9)

Heren = 0 stands for the case shown in figure 1(a) andn = 1 for the case shown in figure 2(a),
and the matrixTi (i = 1, 2 or s) is defined as

Ti =


1 1 1 1
Ui1 −Ui1 Ui2 −Ui2
αi1 αi1 αi2 αi2
βi1 −βi1 βi2 −βi2

 (10)

with

αij = C(i)13 +C(i)33UijQij andβij = C(i)44(Uij +Qij ) (11)

and the matrixPi (i = 1, 2 or s) is defined in equation (7) forz = −di .
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The last equation in matrix equation (2) can be rewritten using equation (4) as

Q2
i = ξ2

i − C(i)66/C
(i)
44 . (12)

We will represent this solution asQ2
i3. For this solution we have a forward wave (+Qi3) and

a backward wave (−Qi3). We can derive a relation for the amplitudes of the present waves,
which we denote by|v+

1,1〉 and|v−s 〉, at the top surface of the superlattice and the bottom surface
of the substrate as

|v−s 〉 = t−1
s (tspst

−1
s )(t1p1t

−1
1 )n[(t2p2t

−1
2 )(t1p1t

−1)]LN t1|v+
1,1〉 (13)

where the meaning ofn is the same as in equation (9). Here the matricesti andpi (i = 1, 2
or s) are given by

ti =
(

1 1
C
(i)
44Qi3 −C(i)44Qi3

)
(14)

and

pi =
(
fi3(−di) 0

0 fi3(di)

)
(15)

with fi3(d) = exp(iqxQi3d).

3. Expansion of phase transfer matrices and the effective elastic constants

In reference 1, we have demonstrated that the Rayleigh wave velocity obtained from our
dispersion equation [2], which is essentially derived from equation (9), approaches the velocity
given by the EEC model and that both velocities coincide with each other in the limit of the
zero period. This fact suggests that the transfer matrices in equations (9) and (13) may be
replaced by the corresponding transfer matrices of the EEC model in the zero period limit. In
order to elucidate the relationship between our dispersion equation and the EEC model as well
as gaining insight into modifying the EEC model, we will expand these transfer matrices with
respect to the periodD.

The amplitudes of the sagittal elastic waves and the pure transverse waves on the top of
thelth layer atz = −zil and those on the top of the(l + 1)th layer atz = −zil+1 are related by
the transfer matricesT2P2T

−1
2 T1P1T

−1
1 andt2p2t

−1
2 t1p1t

−1
1 as

T1|u+
1,l+1〉 = T2P2T

−1
2 T1P1T

−1
1 · T1|u+

1,l〉 (16)

and

t1|v+
1,l+1〉 = t2p2t

−1
2 t1p1t

−1
1 · t1|v+

1,l〉. (17)

These transfer matricesT2P2T
−1
2 T1P1T

−1
1 andt2p2t

−1
2 t1p1t

−1
1 look different from the standard

ones [6–8]. The transformation from the present forms to the standard forms is given in
appendix A.

Now we expand the phase matrixPi orpi in terms of phase variableqxQijdi . For example
the matrixTiPiT

−1
i (i = 1 or 2) can be written as

TiPiT
−1
i = 1− iqxdi(TiQ̃iT

−1
i ) + 1

2(−iqxdi)
2(TiQ̃iT

−1
i )2 + · · · (18)

with

Q̃i =


Qi1 0 0 0
0 −Qi1 0 0
0 0 Qi2 0
0 0 0 −Qi2

 . (19)
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We obtain the same result fortipi t
−1
i (i = 1 or 2) simply replacingTi and Q̃i by ti and

q̃i =
(
Qi3 0
0 −Qi3

)
, respectively.

After complicated but straightforward calculations, we obtain

TiQ̃iT
−1
i =


0 −1 0 1/C(i)44

−C(i)13/C
(i)
33 0 1/C(i)33 0

0 C
(i)
44ξ

2
i 0 −1

ηi 0 −C(i)13/C
(i)
33 0


(
ηi = C(i)44ξ

2
i − C(i)11 +

C
(i)2

13

C
(i)
33

)
(20)

the derivation of which is given in appendix B, and

ti q̃i t
−1
i =

(
0 1/C(i)44

C
(i)
44Q

2
i3 0

)
. (21)

Since the matrices with capital symbols and small letter symbols give the same results
by replacing the symbols, we will in principle present only the results for the capital symbol
matrices. Utilizing the expansion form (18), we can expand the transfer matrix in equation (16)
as

T2P2T
−1
2 T1P1T

−1
1 = 1− iqxD[f1(T1Q̃1T

−1
1 ) + f2(T2Q̃2T

−1
2 )]

+1
2(−iqxD)

2[f 2
1 (T1Q̃1T

−1
1 )2 + 2f1f2(T2Q̃2T

−1
2 )(T1Q̃1T

−1
1 )

+f 2
2 (T2Q̃2T

−1
2 )2] + · · · (22)

with fi = di/D (i = 1 or 2).
We will replace thelth layer, which consists of two constituents 1 and 2 of thicknessd1

andd2, by a medium of thicknessD with EECs. Then the above discussions and relations can
be applied for the effective medium by suitable replacements of variables. We will omit the
suffix i (i = e) for the effective medium. Then the corresponding relations to equations (16)
and (17) are given as

T |u+
1,l+1〉 = T PT −1 · T |u+

1,l〉 (23)

and

t |v+
1,l+1〉 = tpt−1 · t |v+

1,l〉. (24)

It is easy to write down the matricesT andt for the effective medium from the matrices (10)
and (14). The matricesP andp are defined in equations (7) withz = −D and (15) with
di = D for i = e.

The transfer matrixT PT −1 is expanded with respect to the phase factorqxQjD as

T PT −1 = 1− iqxD(T Q̃T
−1) + 1

2(−iqxD)
2(T Q̃T −1)2 + · · · (25)

where the matrix productT Q̃T −1 can be readily obtained from the matrix (20).
We expect that the transfer matrices in equations (16) and (17) are equivalent to the ones

in equations (23) and (24) in the vicinity of zero period (D → 0). Then the expansions of
these transfer matrices with respect toqxD, which are represented in equations (22) and (25),
must be equal at least in the first order terms:

T Q̃T −1 = f1(T1Q̃1T
−1
1 ) + f2(T2Q̃2T

−1
2 ). (26)

From equations (20) and (26) one can readily derive the following relations.

f1 + f2 = 1 (27)
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1

C44
= f1

C
(1)
44

+
f2

C
(2)
44

(28)

1

C33
= f1

C
(1)
33

+
f2

C
(2)
33

(29)

C13

C33
= f1

C
(1)
13

C
(1)
33

+ f2
C
(2)
13

C
(2)
33

(30)

C44ξ
2 = f1C

(1)
44 ξ

2
1 + f2C

(2)
44 ξ

2
2 (31)

and

C11− C
2
13

C33
= f1

[
C
(1)
11 −

C
(1)2

13

C
(1)
33

]
+ f2

[
C
(2)
11 −

C
(2)2

13

C
(2)
33

]
. (32)

Equations (4) and (31) yieldρ = f1ρ1 + f2ρ2, which indicates that the density of the
effective medium is the mean density of two constituents. Equations (21) andt q̃t−1

= f1(t1q̃1t
−1
1 ) + f2(t2q̃2t

−1
2 ) give

C44Q
2
3 = f1C

(1)
44Q

2
13 + f2C

(2)
44Q

2
23. (33)

From equations (12), (31) and (33), we obtain

C66 = f1C
(1)
66 + f2C

(2)
66 . (34)

Equations (28), (29), (30), (32) and (34) are the same expressions for the superlattice EECs as
derived by Grimsditch [11].

The expansions (22) and (25) are not equivalent in the second order terms. The second
order term in expansion (25) is given by

[f1(T1Q̃1T
−1
1 ) + f2(T2Q̃2T

−1
2 )]2 = f 2

1 (T1Q̃1T
−1
1 )2 + f 2

2 (T2Q̃2T
−1
2 )2

+f1f2[(T1Q̃1T
−1
1 )(T2Q̃2T

−1
2 ) + (T2Q̃2T

−1
2 )(T1Q̃1T

−1
1 )] (35)

using the relation (26). This expression is symmetric in terms of two transfer matricesT1Q̃1T
−1
1

andT2Q̃2T
−1
2 , while the second order term in expansion (22) lacks this symmetry. This fact

results from the symmetry difference between a layer consisting of two constituents and an
effective medium layer with respect to the inversion or mirror symmetry. Here we notice that
we obtain the EEC model if we neglect this symmetry difference and assume the expansions
of T2P2T

−1
2 T1P1T

−1
1 andt2p2t

−1
2 t1p1t

−1
1 are completely expressed in terms of the first order

terms of their expansion, which we will call the first order expansion approximation. This is
an essential defect of the EEC model. Next we will introduce the modified EEC model which
is derived from devising that both the transfer matrices may be adjusted to coincide with each
other up to the order of(qxD)2 in their expansions.

4. A new model to calculate surface elastic waves

As already discussed in section 2, the amplitudes of the quasi-transverse and longitudinal waves
in a substrated superlattice on the top surface are related to the ones on the bottom surface of
the substrate through equation (9). For the pure transverse waves we derived equation (13)
and these waves form the surface waves known as the Love waves. We will discuss first the
surface elastic waves known as the Rayleigh waves and the Sezawa waves, which are related
to equation (9).
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The transfer matrixT1PiT
−1
i (i = 1 or 2) in equation (9) can be rewritten asTiPiT

−1
i

= TiP 1/2
i T −1

i TiP
1/2
i T −1

i , because of a trivial relation(P 1/2
i )2 = Pi . Using this expression we

can rewrite the quantity [(T2P2T
−1
2 )(T1P1T

−1
1 )]LN as

[(T2P2T
−1
2 )(T1P1T

−1
1 )]LN = (T1P

1/2
1 T −1

1 )−1[(T1P
1/2
1 T −1

1 T2P
1/2
2 T −1

2 )

×(T2P
1/2
2 T −1

2 T1P
1/2
1 T −1

1 )]LN(T1P
1/2
1 T −1

1 ). (36)

Here we can easily derive a following expansion relation by referring the expansion (22) to
equation (26):

(T1P
1/2
1 T −1

1 T2P
1/2
2 T −1

2 )(T2P
1/2
2 T −1

2 T1P
1/2
1 T −1

1 )

= 1− iqxD(T Q̃T
−1) + 1

2(−iqxD)
2(T Q̃T −1)2 + · · · . (37)

Equation (37) suggests that the matrix(T1P
1/2
1 T −1

1 T2P
1/2
2 T −1

2 )(T2P
1/2
2 T −1

2 T1P
1/2
1 T −1

1 ), which
is also a transfer matrix, can be replaced by the transfer matrixT PT −1 for the effective
medium in a pretty good approximation. Note that both of the transfer matrices have inversion
symmetry. This is the reason why the expansions of these transfer matrices with respect to the
phase factor are identical up to the second order. Thus we have

[(T2P2T
−1
2 )(T1P1T

−1
1 )]LN ∼= (T1P

1/2
1 T −1

1 )−1[T P (−LN ·D)T −1](T1P
1/2
1 T −1

1 ) (38)

in the second order approximation. Substitution of the approximation (38) in equation (9)
gives

Ts |u−s 〉 = (TsPsT −1
s )(T1P

k/2
1 T −1

1 )[T P (−LN ·D)T −1](T1P
1/2
1 T −1

1 )T1|u+
1,1〉 (39)

in whichk = 2n− 1 (= −1 or 1) and(P 1/2
1 )−1 = P−1/2. In equation (39) the case ofk = −1

corresponds to the four layered structure labelled by m1, me, m∗1 and s in figure 1(b), instead
of the original structure shown in figure 1(a); the first layer is the constituent 1 with thickness
d1/2, the second layer an effective medium e with thicknessLN ·D, the third layer the virtual
constituent 1 with thicknessd1/2 and the last layer is a substrate with thicknessds , respectively.
Note that the traveling direction of the elastic waves is reversed in the third layer. The case of
k = 1 is illustrated in figure 2(b).

The elastic waves should satisfy the stress free conditionsσ (i)zz = 0 andσ (i)zx = 0 (i = 1 or
s) at the top surface,z = 0, and the bottom surface,z = −zL− zs , of a substrated superlattice.
These conditions are summarized as

A1|u+
1,1〉 = 0 andAs |u−s 〉 = 0 (40)

using the matrixAi (i = 1 or s) defined by

Ai = ( 0̂ 1̂)Ti with 0̂=
(

0 0
0 0

)
and1̂=

(
1 0
0 1

)
. (41)

The stress-free boundary conditions (40) together with the amplitude equation (9) yield an
exact dispersion equation [2] to calculate the surface elastic waves for a substrated superlattice
illustrated in figure 1(a) or 2(a) [1]. By using the approximate equation (39) instead of the
exact equation (9) we obtain(

( 0̂ 1̂)
( 0̂ 1̂)(TsPsT −1

s )(T1P
k/2
1 T −1

1 )[T P (−LN ·D)T −1](T1P
1/2
1 T −1

1 )

)
T1|u+

1,1〉 = 0. (42)

Equation (42) has non-trivial solutions, when the determinant of the 2× 2 matrix included in
the above equation becomes zero:

det

{
( 0̂ 1̂)(TsPsT

−1
s )(T1P

k/2
1 T −1

1 )[T P (−LN ·D)T −1](T1P
1/2
1 T −1

1 )

(
1̂
0̂

)}
= 0. (43)
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Here the case ofk = −1 corresponds to the superlattice shown in figure 1(b) andk = 1 to the
one shown in figure 2(b), respectively.

We obtain a similar dispersion equation for the pure transverse waves:

( 0 1)(tspst
−1
s )(t1p

k/2
1 t−1

1 )[tp(−LN ·D)t−1](t1p
1/2
1 t−1

1 )

(
1
0

)
= 0 (44)

with the case ofk = −1 for the model illustrated by figure 1(b) andk = 1 for the model of
figure 2(b). Here(p1/2

1 )2 = p1, p(−LN ·D) = pLN and the stress free conditionsσ (i)zy = 0
(i = 1 or s) on the top and bottom surfaces are given by

( 0 1)t1|v+
1,1〉 = 0 and( 0 1)ts |v−s 〉 = 0. (45)

5. Results and discussions

We have considered two types of substrated superlattice; type I consists ofLN alternating m1

and m2 layers as shown in figure 1(a) and type II consists of the type I superlattice with an
additional m1 layer as shown in figure 2(a). Our substrated superlattice must not be confused
with the capped semi-infinite superlattice [10]. Our superlattice has a finite thickness and its
bottom surface contacts with a substrate of an arbitrary thicknessds , while the capped one
is semi-infinite in thickness and its top surface is covered with a thin layer. The distinction
between the finite thickness and the semi-infinite thickness is significant. While our approach
starts with the elastic waves in a finite superlattice, the conventional theories [6–10] consider
elastic waves in an infinite superlattice.

The dispersion equations to evaluate the surface acoustic waves for the sagittal and in-
plane transverse modes in a superlattice of thicknessLN ·D orLN ·D + d1 in contact with a
substrate of thicknessds , as shown in figure 1(a) or figure 2(a), are given by

det

{
( 0̂ 1̂)(TsPsT

−1
s )(T1P1T

−1
1 )n[(T2P21T −1

2 )(T1P1T
−1
1 )]LN

(
1̂
0̂

)}
= 0 (46)

and

( 0 1)(tspst
−1
s )(t1p1t

−1
1 )n[(t2p2t

−1
2 )(t1p1t

−1
1 )]LN

(
1
0

)
= 0. (47)

Here the dispersion equations with the case ofn = 0 andn = 1 correspond to those for the
superlattice shown in figure 1(a) and 2(a), respectively.

In reference 1, the dispersion equation (46) withn = 0 [2] has been expressed in terms
of the 4× 4 matrix as equation (26) in reference 1. Using equation (41) one can easily reduce
the previous expression [2] to the form of the 2× 2 matrix given by equation (46) withn = 0.

The thickness of the substrate is considered infinite in the standard Brillouin scattering
experiment [1]. For the case ofds → ∞, the terms( 0̂ 1̂)TsPs in equations (43) and (46)

and( 0 1)tsps in equations (44) and (47) can be replaced by the terms of

(
1 0 0 0
0 0 1 0

)
and( 1 0), respectively. The validity of these replacements is proved in appendix C.

We have shown in section 3 that the EEC model is equivalent to the first order
expansion approximation of the exact dispersion equations (46) and (47) regarding the
phase factorqxD. Under this approximation, the(T1P1T

−1
1 )n[(T2P2T

−1
2 )(T1P1T

−1
1 )]LN and

(t1p1t
−1
1 )n[(t2p2t

−1
2 )(t1p1t

−1
1 )]LN matrices in equations (46) and (47) are replaced by the

T P (−LN ·D− nd1)T
−1 andtp(−LN ·D− nd1)t

−1 matrices, which are independent of the
periodD. It is obvious that the EEC model does not provide the dispersion relation as the
exact expressions (46) and (47) do.
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In section 4, we have derived a new model or approximation which is an extended EEC
model and recovers the dispersion relation of interest. That is represented by equations (43)
and (44). It is essential to symmetrize the transfer matrices under the inversion operation
in this model. This model replaces a real substrated superlattice illustrated by figure 1(a) or
figure 2(a) by a virtual four layered structure shown by figure 1(b) or figure 2(b).

We have carried out the exact calculations of the Rayleigh wave velocities in Cu/Al and
Cu/Ag superlattices illustrated in figure 1(a) applying our dispersion equation [2] (equation (46)
with n = 0) for the case ofds → ∞ or ds > 3.5λs (the wavelength of the surface wave
λs
∼= 3000 Å in the standard Brillouin scattering experiment) [1]. In our extended EEC model,

the corresponding surface wave velocities of the substrated superlattices can be evaluated from
equation (43) withk = −1.

The corresponding numerical results in our extended EEC model are listed in tables 1 and
2 and compared with exact ones. HereLD = λs/D (D: the period of the superlattice), and
the Rayleigh wave velocity is normalized by the transverse wave velocity of pure Cu metal.
We can conclude that our extended EEC model can reproduce the exact dispersion relation of
the Rayleigh surface waves of a superlattice with good accuracy.

Table 1. Numerical comparisons between the extended EEC model and the exact calculation of
the relative Rayleigh wave velocities in Cu/Al superlattices on glass substrate of infinite thickness
(LN/LD = 1.5) in two cases; case a:dCu/dAl = 1/2 and case b:dCu/dAl = 2/1. The parameter
LD means the number of periods included in the wavelength of the Rayleigh wave (λs = 2π/qx ):
LD = λs/D with D = dCu + dAl .

Case a Case b

LD Exact Model RE Exact Model RE

2 1.026 16 1.051 32−0.024 52 0.981 84 0.987 20−0.005 46
6 1.090 02 1.090 23−0.000 19 1.000 28 1.000 50−0.000 22

12 1.098 88 1.098 26 0.000 56 1.005 58 1.005 28 0.000 30
18 1.100 88 1.100 48 0.000 36 1.006 88 1.006 65 0.000 23
30 1.102 23 1.102 04 0.000 17 1.007 71 1.007 59 0.000 12
54 1.103 03 1.102 96 0.000 06 1.008 16 1.008 12 0.000 04
90 1.103 41 1.103 38 0.000 03 1.008 36 1.008 35 0.000 01

270 1.103 78 1.103 78 0.000 00 1.008 55 1.008 55 0.000 00

∞ 1.103 96 1.008 63

∞: EEC model.
RE: the relative error of the extended EEC model calculation against the exact calculation.

Appendix A

Here we will elucidate the relationships between transfer matrices used in equations (16) and
(17) and those used generally in conventional theoretical treatments [6–8].

We have definedT2P2T
−1
2 T1P1T

−1
1 and t2p2t

−1
2 t1p1t

−1
1 as the transfer matrices in

equations (16) and (17). These expressions are our device to treat the transfer matrices
theoretically without employing the Bloch theorem. Equations (16) and (17) can be rewritten
as

|u+
1,l+1〉 = T −1

1 T2P2T
−1
2 T1P1|u+

1,l〉 (A1)

and

|v+
1,l+1〉 = t−1

1 t2p2t
−1
2 t1p1|v+

1,l〉. (A2)



Model for surface waves of superlattices 5003

Table 2. Numerical comparisons between the extended EEC model and the exact calculation of
the relative Rayleigh wave velocities in Cu/Ag superlattices on glass substrate of infinite thickness
(LN/LD = 1.5) in two cases; Case a:dCu/dAg = 1/2 and Case b:dCu/dAg = 2/1. The meaning
of the parameterLD is the same as in table 1.

Case a Case b

LD Exact Model RE Exact Model RE

2 0.795 33 0.791 88 0.004 34 0.888 37 0.884 87 0.003 94
4 0.788 62 0.787 33 0.001 64 0.875 97 0.873 77 0.002 51
6 0.786 76 0.785 66 0.001 40 0.873 09 0.871 94 0.001 32

12 0.784 21 0.783 64 0.000 73 0.870 59 0.870 10 0.000 56
18 0.783 15 0.782 83 0.000 41 0.869 68 0.869 40 0.000 32
30 0.782 24 0.782 11 0.000 17 0.868 89 0.868 77 0.000 14
54 0.781 63 0.781 58 0.000 06 0.868 33 0.868 29 0.000 05
90 0.781 32 0.781 30 0.000 03 0.868 04 0.868 03 0.000 01

136 0.781 16 0.781 15 0.000 01 0.867 90 0.867 89 0.000 01
270 0.781 01 0.781 01 0.000 00 0.867 75 0.867 75 0.000 00

∞ 0.780 86 0.867 61

∞: EEC model.
RE: the relative error of the extended EEC model calculation against the exact calculation.

These expressions will be considered usual rather than ours. On the basis of equations (A1)
and (A2), the transfer matrices should be defined asT −1

1 T2P2T
−1
2 T1P1 and t−1

1 t2p2t
−1
2 t1p1.

The transformation from the transfer matrices in equations (16) and (17) into the usual ones
in equations (A1) and (A2) is obviously a similarity transformation:

T −1
1 T2P2T

−1
2 T1P1 = T −1

1 [T2P2T
−1
2 T1P1T

−1
1 ]T1 (A3)

t−1
1 t2p2t

−1
2 t1p1 = t−1

1 [t2p2t
−1
2 t1p1t

−1
1 ]t1. (A4)

In the conventional theoretical treatment [6], one chooses the standard amplitudes of the
elastic waves at the middle of each constituent layer, i.e.,z = −zil − di/2. Now we will write
these amplitudes as

|ui,l〉 =


ail
bil
cil
dil

 (A5)

for the sagittal modes and|vi,l〉 for the transverse mode. These amplitudes are related to our
amplitudes as follows:

|ui,l〉 = P 1/2
i |u+

i,l〉 = P−1/2
i |u−i,l〉 (A6)

and

|vi,l〉 = p1/2
i |v+

i,l〉 = p−1/2
i |v−i,l〉. (A7)

Here we have(P 1/2
i )2 = Pi and(P 1/2

i )−1 = P−1/2
i , (p1/2

i )2 = pi and(p1/2
i )−1 = p−1/2

i .
In the conventional theoretical treatment [6], the exponential terms inPi and pi in

equations (A1), (A2), (A6) and (A7) are expressed in terms of hyperbolic cosines and sines;
we interpret ourQij as iQij and the axisz as−z in the conventional theory. Accordingly we
replacePi andpi byU−1PiU andσpiσ/2, where is used the notation

U =
(
σ 0̂
0̂ σ

)
(A8)
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with 0̂=
(

0 0
0 0

)
, U−1 = U/2, σ =

(
1 1
1 −1

)
andσ−1 = σ/2.

Equations (A1) and (A2) can be rewritten as

U−1|u1,l+1〉 = (U−1P
1/2
1 U)(U−1T −1

1 T2U)(U
−1P2U)(U

−1T −1
2 T1U)(U

−1P
1/2
1 U)U−1|u1,l〉

(A9)

and

σ−1|v1,l+1〉 = (σ−1p
1/2
1 σ)(σ−1t−1

1 t2σ)(σ
−1p2σ)(σ

−1t−1
2 t1σ)(σ

−1p
1/2
1 σ)σ−1|v1,l〉. (A10)

We write equations (A9) and (A10) as

|ψl+1〉 = T̃ |ψl〉 (A11)

and

|φl+1〉 = t̃ |φl〉 (A12)

with |ψl〉 = U−1|u1,l〉 and|φl〉 = σ−1|v1,l〉. Here we have an expression

|ψl〉 = 1

2


a1,l + b1,l

a1,l − b1,l

c1,l + d1,l

c1,l − d1,l

 (A13)

which appears in the conventional theory [6]. The matricesT̃ andt̃ have been defined as the
transfer matrices in the conventional theory [6–8]. Obviously from the above discussion, the
transfer matrices̃T andt̃ in the conventional theory are related to those in equations (16) and
(17) by

T̃ = U−1P
1/2
1 T −1

1 (T2P2T
−1
2 T1P1T

−1
1 )T1P

−1/2
1 U (A14)

and

t̃ = σ−1p
1/2
1 t−1

1 (t2p2t
−1
2 t1p1t

−1
1 )t1p

−1/2
1 σ. (A15)

Appendix B

The inverse matrixT −1
i of the matrixTi defined by equation (10) is given by

T −1
i =

1

2


−αi2/αi βi2/Uβi 1/αi −Ui2/Uβi
−αi2/αi −βi2/Uβi 1/αi Ui2/Uβi

−αi1/αi −βi1/Uβi −1/αi Ui1/Uβi

−αi1/αi βi1/Uβi −1/αi −Ui1/Uβi

 (B1)

where

αi ≡ αi1− αi2 = C(i)33(Ui1Qi1− Ui2Qi2) (B2)

and

Uβi ≡ Ui1βi2 − Ui2βi1 = C(i)44(Ui1Qi2 − Ui2Qi1). (B3)

By use of matrices (10), (19) and (B1) with the expression (11), one can easily obtain

TiQ̃iT
−1
i ≡ B̃(i) =


0 −1 0 1/C(i)44

−C(i)13/C
(i)
33 0 1/C(i)33 0

0 B̃
(i)
32 0 B̃

(i)
34

B̃
(i)
41 0 B̃

(i)
43 0

 (B4)
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with

B̃
(i)
32 = −C(i)13 +C(i)33

(Ui1Qi1)(Ui2Qi2)(Q
2
i1−Q2

i2) +Q2
i1Q

2
i2(Ui1Qi1− Ui2Qi2)

(Ui1Qi2 − Ui2Qi1)Qi1Qi2
(B5)

B̃
(i)
34 =

C
(i)
13

C
(i)
44

+
C
(i)
33

C
(i)
44

(Ui1Qi1)(Ui2Qi2)(Q
2
i2 −Q2

i1)

(Ui1Qi2 − Ui2Qi1)Qi1Qi2
(B6)

B̃
(i)
41 = C(i)44

{
C
(i)
13

C
(i)
33

(
Q2
i2 −Q2

i1

Ui1Qi1− Ui2Qi2
− 1

)
+
Qi1Qi2(Ui1Qi2 − Ui2Qi1)

Ui1Qi1− Ui2Qi2

}
(B7)

and

B̃
(i)
43 =

C
(i)
44

C
(i)
33

(
1− Q2

i2 −Q2
i1

Ui1Qi1− Ui1Qi2

)
. (B8)

Now we can find the following relations betweenUij andQij , which are the solutions of
equation (3):

Ui2Qi2 − Ui1Qi1 = − C
(i)
44

C
(i)
13 +C(i)44

(Q2
i2 −Q2

i1) (B9)

(Ui2Qi1− Ui1Qi2)Qi1Qi2 = C
(i)
11 − C(i)44ξ

2
i

C
(i)
13 +C(i)44

(Q2
i2 −Q2

i1) (B10)

and

(Ui1Qi1)(Ui2Qi2) = C
(i)
11 − C(i)44ξ

2
i

C
(i)
33

. (B11)

Furthermore, from equation (5) we have

Q2
i1Q

2
i2 =

C
(i)
11 − C(i)44ξ

2
i

C
(i)
33

(1− ξ2
i ). (B12)

Substituting relations (B9)–(B12) into equations (B5)–(B8), we have

B̃
(i)
32 = C(i)44ξ

2
i B̃

(i)
34 = −1 B̃

(i)
41 = C(i)44ξ

2
i − C(i)11 +

C
(i)2

13

C
(i)
33

andB̃(i)43 = −
C
(i)
13

C
(i)
33

. (B13)

Thus we can derive the expression (20).

Appendix C

At the top surface of the substrate the boundary conditions, which are included in equations (40)
and (45), can be expressed as

( 0̂ 1̂)TsPs |u+
s 〉 = 0 and( 0 1)tsps |v+

s 〉 = 0. (C1)

The surface elastic waves damp as they propagate from the surface into the inside of the
superlattice. Thus for the case ofds →∞ we have

fsj (ds)/fsj (−ds) ≈ 0 j = 1, 2 and 3 (C2)

wherefsj (z) is defined in equations (7) and (15). Using (C2) one has

( 0̂ 1̂)TsPs
∼=
(
αs1fs1 0 αs2fs2 0
βs1fs1 0 βs2fs2 0

)
=
(
αs1fs1 αs2fs2
βs1fs1 βs2fs2

)(
1 0 0 0
0 0 1 0

)
(C3)
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and

( 0 1)tsps
∼= C(s)44Qs3fs3( 1 0) (C4)

wherefsj denotesfsj (−ds).
The relations (C3) and (C4) suggest that in this case the boundary conditions (C1) can be

rewritten as (
1 0 0 0
0 0 1 0

)
|u+
s 〉 = 0 and( 1 0)|v+

s 〉 = 0. (C5)

These are reasonable boundary conditions for the substrate of infinite thickness. From the
above discussion we can readily conclude that the terms( 0̂ 1̂)TsPs and ( 0 1)tspS are

replaced by the terms

(
1 0 0 0
0 0 1 0

)
and( 1 0) for the case ofds →∞.
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